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On the Path Integral of the Relativistic Electron
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We revisit the path integral description of motion of a relativistic electron.
Applying a minor, but well-motivated conceptional change to Feynman’ s
chessboard model, we obtain exact solutions of the Dirac equation. The calcula-
tion is performed by means of a particularly simple method different from both
the combinatorial approach envisaged by Feynman and its Ising model
correspondence.

1. INTRODUCTION

It is well known that the continuum propagator of the Dirac equation

can be found by summing over random walks. Renewed interest in this issue

has arisen in connection with the investigation of stochastic processes which

have been shown to be related to the Dirac equation.(3,8) Likewise, the corre-

spondence between the path integral and the Ising model has been explored(4,5)

and solutions for a discretized version of the Dirac equation have been found. (6)

As described by Feynman and Hibbs,(1) the propagator of the (1 1 1)-

dimensional Dirac equation

i - C / - t 5 2 i s z - C / - x 2 m s x C (1)

(where units c 5 " 5 1 are assumed and s x and s z are the respective Pauli

spin matrices) can be found from a model of the one-dimensional motion of

a relativistic particle. In this model the motion of the electron is restricted

to movements either forward or backward occurring at the speed of light.

Assuming units c 5 1, the motion of the particle corresponds to a sequence

of straight path segments of slope 6 45 8 in the x±t plane. The retarded
propagator K(x, t) of the Dirac equation may then obtained from the limiting

process (see, e.g., refs. 1 and 5)
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K d g (x, t) 5 lim
N ® `

A d g ( e ) o
R $ 0

N d g (R)(im e )R (2)

Here N is the number of segments of constant length e 5 t/N of the particle’ s

path between its start point (which is assumed to be the origin of the corres-

ponding coordinate system) and the end point (x, t) of the path. R denotes

the number of bends, and N d g (R) stands for the total number of paths consisting

of N segments with R bends. The indices g and d correspond to the directions
forward or backward at the path’ s start and end points, respectively, and refer

to the components of K. Here A d g ( e ) accounts for a convenient normalization.

2. MODEL AND CALCULATIONS

In this note we demonstrate that a minor conceptional change of Feyn-
man’ s chessboard model naturally and directly yields exact solutions to the

Dirac equation (1). The conceptional change is suggested by the observation

that a path with R bends between given start and end points is determined

by R 2 1 bends. For a sketch of the situation consider Fig. 1. The path

Fig. 1. A possible path with five bends between given start and end points. The first two bends

to the right and left, respectively, determine the path since the location and direction of the

last bend (indicated by a circle) is fully determined by the first four bends.
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shown in Fig. 1 exhibits five bends, three to the left and two to the right.

However, the first two bends to the right and left, respectively, determine

the path since the location and direction of the last bend (indicated by a
circle in Fig. 1) is fully determined by the first four bends. We thus consider

here, in contrast to the original formulation of the model, where all bends

occurring on a path contribute to the total amplitude, only contributions to

the total amplitude from bends which actually define the path. In light of

the general path integral formalism, it makes perfect sense to consider only

those bends which define a path, i.e., the minimum information characterizing
a path.

In the following we demonstrate by an explicit calculation that the

modified model directly leads to exact solutions of the Dirac equation (1).

We will use a calculation scheme different from the combinatorial approach

envisaged by Feynman and Hibbs(1) and its Ising model correspondence.(4)

Following Feynman’ s chessboard model, we consider each bend which
defines a possible path to contribute an amplitude

f jr 5 im e jr (3)

where e jr 8 e is the length of a path segment. The total amplitude contributed

by a path is the product

f 5 &
r

(im e jr) (4)

where jr runs over all the segments followed by a bend. While the index r
enumerates the path segments after which bends occur, the value of jr indicates

the corresponding segment. A path with R bends which starts with positive
velocity (i.e., to the right) and ends with negative velocity (i.e., to the left)

consists of exactly (R 2 1)/2 1 1 bends to the left and (R 2 1)/2 to the

right. The (R 2 1)/2 bends to the right may occur after any arbitrary path

segment to the left. (R 2 1)/2 of the (R 2 1)/2 1 1 bends to the left occur

in the same manner after path segments to the right, while the additional
bend to the left occurs after the last segment. Let P be the total number of path

segments to the right ( 1 ) and Q those to the left ( 2 ). Then, the contribution of

the R+ 5 (R 2 1)/2 bends to the right to C 2 1 is

C 2 1 (R+) 5 N 2 1 (R+) &
R 1

r 5 1
(im e jr)

5 o
P 2 1

j1 , ? ? ? , jR
1

(im e )R 1
(5)

For P À 1, C 2 1 (R+) is approximated by
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C 2 1 (R+) ’
1

R+! o
P

j1 Þ ? ? ? Þ jR
1

(i e )R 1

’
(im e )R 1

R+! 1 o
P

jr 5 1

1 2
R 1

5
PR 1

(im e )R 1

R+!
(6)

The contribution of the R 2 5 (R 2 1)/2 1 1 2 1 5 (R 2 1)/2 bends to the

left is calculated similarly. The additional bend (occurring after the last

segment to the right) does not enter the calculation since a possible path is

fully determined by the location of its R 2 1 bends to the right and left,
respectively. Therefore we find

C 2 1 (R 2 ) ’
QR 2

(i e )R 2

R 2 !
(7)

In the limit N ® ` (i.e., P, Q ® ` ) the exact expression for C 2 1 becomes

C 2 1 5 o
odd R

(im e )R 2 1 (PQ)(R 2 1)/2

[((R 2 1)/2)!]2
(8)

where e 5 t/(P 1 Q). With v 5 D x/ D t 5 x/t 5 (P 2 Q)/(P 1 Q) the classical

velocity attributed to the particle, PQ 5 [(P 1 Q)/2 g ]2, where g 5
1/ ! 1 2 v2. Thus we have

C 2 1 5 o
`

k 5 0

( 2 1)k (mt/2 g )2k

[(k)!]2
5 J0(mt/ g ) (9)

where J0 is the zeroth-order Bessel function of the first kind. A similar

calculation yields for C 1 2 the same result.

For C 1 1 , the number of bends to the right and to the left is R/2 for

each direction where R is even. However, the path is again defined by R+ 5
R/2 bends to the right and R 2 5 R/2 2 1 bends to the left. Thus,

C 1 1 5 o
even R

(im e )R 2 1 PR/2QR/2 2 1

(R/2)!(R/2 2 1)!

5 i ! P/Q o
`

k 5 0
( 2 1)k (mt/2 g )2k 1 1

(k 1 1)!(k)!

5 i ! P/QJ1(mt/ g ) (10)

With ! P/Q 5 (t 1 x)/(t2 2 x2)1/2 and t 5 (t2 2 x2)1/2 the component C 1 1

becomes
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C 1 1 5 i(t 1 x)/ t J1(mt/ g ) (11)

A similar calculation yields

C 2 2 5 i(t 2 x)/ t J1(mt/ g ) (12)

This completes the envisaged computation. As a side remark note that the

presented calculation scheme is not restricted to e jr 8 e . As will be shown

elsewhere, similar results may be obtained for e jr 5 e ( jr).

3. DISCUSSION

To relate the components C d g to the solution of the Dirac equation (1),

consider the explicit represation

s x 5 1 0 1

1 0 2 , s z 5 1 1 0

0 2 1 2 (13)

As may be seen by direct calculation, in this representation C 1 and C 2

defined as

C 1 5 1 C 1 1

C 1 2 2 , C 2 5 1 C 1 2

C 2 2 2 (14)

are two independent, exact solutions of the Dirac equation (1). This completes
the demonstration that Feynman’ s chessboard model yields exact solutions

to the Dirac equation when taking into account only those bends which

actually define paths. With regard to fundamental theories of spacetime and/

or quantum mechanics (e.g., in the spirit of Finkelstein(2)) this could be of

importance. Similar results have been obtained from the continuum limit of

a discretized version of the Dirac equation.(6)

The calculation scheme and part of the results presented here can be

generalized to unevenly spaced spacetime lattices. This opens up the possibil-

ity to define an analog to the Feynman checkerboard for discrete spacetime

models of different type (e.g., ref. 7). Related work is in progress and will

be presented elsewhere.
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